35 research outputs found

    Comparative reliability and diagnostic performance of conventional 3T magnetic resonance imaging and 1.5T magnetic resonance arthrography for the evaluation of internal derangement of the hip

    Get PDF
    Objective; To compare the diagnostic accuracy of conventional 3T MRI against 1.5T MR arthrography (MRA) in patients with clinical femoroacetabular impingement (FAI). Methods; Sixty-eight consecutive patients with clinical FAI underwent both 1.5T MRA and 3T MRI. Imaging was prospectively analysed by two musculoskeletal radiologists, blinded to patient outcomes and scored for internal derangement including labral and cartilage abnormality. Interobserver variation was assessed by kappa analysis. Thirty-nine patients subsequently underwent hip arthroscopy and surgical results and radiology findings were analysed. Results; Both readers had higher sensitivities for detecting labral tears with 3T MRI compared to 1.5T MRA (not statistically significant p=0.07). For acetabular cartilage defect both readers had higher statistically significant sensitivities using 3T MRI compared to 1.5T MRA (p=0.02). Both readers had a slightly higher sensitivity for detecting delamination with 1.5T MRA compared to 3T MRI, but these differences were not statistically significant (p=0.66). Interobserver agreement was substantial to perfect agreement for all parameters except the identification of delamination (3T MRI showed moderate agreement and 1.5T MRA substantial agreement). Conclusion; Conventional 3T MRI may be at least equivalent to 1.5T MRA in detecting acetabular labrum and possibly superior to 1.5T MRA in detecting cartilage defects in patients with suspected FAI

    Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans

    Get PDF
    Maintenance of fluid homeostasis is critical to establishing and maintaining normal physiology. The landmark discovery of membrane water channels (aquaporins; AQPs) ushered in a new area in osmoregulatory biology that has drawn from and contributed to diverse branches of biology, from molecular biology and genomics to systems biology and evolution, and from microbial and plant biology to animal and translational physiology. As a result, the study of AQPs provides a unique and integrated backdrop for exploring the relationships between genes and genome systems, the regulation of gene expression, and the physiologic consequences of genetic variation. The wide species distribution of AQP family members and the evolutionary conservation of the family indicate that the control of membrane water flux is a critical biological process. AQP function and regulation is proving to be central to many of the pathways involved in individual physiologic systems in both mammals and anurans. In mammals, AQPs are essential to normal secretory and absorptive functions of the eye, lung, salivary gland, sweat glands, gastrointestinal tract, and kidney. In urinary, respiratory, and gastrointestinal systems, AQPs are required for proper urine concentration, fluid reabsorption, and glandular secretions. In anurans, AQPs are important in mediating physiologic responses to changes in the external environment, including those that occur during metamorphosis and adaptation from an aquatic to terrestrial environment and thermal acclimation in anticipation of freezing. Therefore, an understanding of AQP function and regulation is an important aspect of an integrated approach to basic biological research

    2016 American College of Rheumatology/European League Against Rheumatism Criteria for Minimal, Moderate, and Major Clinical Response in Juvenile Dermatomyositis: An International Myositis Assessment and Clinical Studies Group/Paediatric Rheumatology International Trials Organisation Collaborative Initiative

    Get PDF
    OBJECTIVE: To develop response criteria for juvenile dermatomyositis (DM). METHODS: We analyzed the performance of 312 definitions that used core set measures from either the International Myositis Assessment and Clinical Studies Group (IMACS) or the Paediatric Rheumatology International Trials Organisation (PRINTO) and were derived from natural history data and a conjoint analysis survey. They were further validated using data from the PRINTO trial of prednisone alone compared to prednisone with methotrexate or cyclosporine and the Rituximab in Myositis (RIM) trial. At a consensus conference, experts considered 14 top candidate criteria based on their performance characteristics and clinical face validity, using nominal group technique. RESULTS: Consensus was reached for a conjoint analysis-based continuous model with a total improvement score of 0-100, using absolute percent change in core set measures of minimal (>/=30), moderate (>/=45), and major (>/=70) improvement. The same criteria were chosen for adult DM/polymyositis, with differing thresholds for improvement. The sensitivity and specificity were 89% and 91-98% for minimal improvement, 92-94% and 94-99% for moderate improvement, and 91-98% and 85-86% for major improvement, respectively, in juvenile DM patient cohorts using the IMACS and PRINTO core set measures. These criteria were validated in the PRINTO trial for differentiating between treatment arms for minimal and moderate improvement (P = 0.009-0.057) and in the RIM trial for significantly differentiating the physician's rating for improvement (P < 0.006). CONCLUSION: The response criteria for juvenile DM consisted of a conjoint analysis-based model using a continuous improvement score based on absolute percent change in core set measures, with thresholds for minimal, moderate, and major improvement

    2016 American College of Rheumatology/European League Against Rheumatism Criteria for Minimal, Moderate, and Major Clinical Response in Juvenile Dermatomyositis An International Myositis Assessment and Clinical Studies Group/Paediatric Rheumatology International Trials Organisation Collaborative Initiative

    Get PDF
    To develop response criteria for juvenile dermatomyositis (DM). We analysed the performance of 312 definitions that used core set measures from either the International Myositis Assessment and Clinical Studies Group (IMACS) or the Paediatric Rheumatology International Trials Organisation (PRINTO) and were derived from natural history data and a conjoint analysis survey. They were further validated using data from the PRINTO trial of prednisone alone compared to prednisone with methotrexate or cyclosporine and the Rituximab in Myositis (RIM) trial. At a consensus conference, experts considered 14 top candidate criteria based on their performance characteristics and clinical face validity, using nominal group technique. Consensus was reached for a conjoint analysis-based continuous model with a total improvement score of 0-100, using absolute per cent change in core set measures of minimal (>= 30), moderate (>= 45), and major (>= 70) improvement. The same criteria were chosen for adult DM/polymyositis, with differing thresholds for improvement. The sensitivity and specificity were 89% and 91-98% for minimal improvement, 92-94% and 94-99% for moderate improvement, and 91-98% and 85-86% for major improvement, respectively, in juvenile DM patient cohorts using the IMACS and PRINTO core set measures. These criteria were validated in the PRINTO trial for differentiating between treatment arms for minimal and moderate improvement (p= 0.009-0.057) and in the RIM trial for significantly differentiating the physician's rating for improvement (p< 0.006). The response criteria for juvenile DM consisted of a conjoint analysis-based model using a continuous improvement score based on absolute per cent change in core set measures, with thresholds for minimal, moderate, and major improvement

    Th17-skewed immune response and cluster of differentiation 40 ligand expression in canine steroid-responsive meningitis-arteritis, a large animal model for neutrophilic meningitis

    Get PDF
    Background: Steroid-responsive meningitis-arteritis (SRMA) is an immune-mediated disorder characterized by neutrophilic pleocytosis and an arteritis particularly in the cervical leptomeninges. Previous studies of the disease have shown increased levels of IL-6 and TGF-beta(1) in cerebrospinal fluid (CSF). In the presence of these cytokines, naive CD4+ cells differentiate into Th17 lymphocytes which synthesize interleukin 17 (IL-17). It has been shown that IL-17 plays an active role in autoimmune diseases, it induces and mediates inflammatory responses and has an important role in recruitment of neutrophils. The hypothesis of a Th17-skewed immune response in SRMA should be supported by evaluating IL-17 and CD40L, inducing the vasculitis. Methods: An enzyme-linked immunosorbent assay (ELISA) was performed to measure IL-17 and CD40L in serum and CSF from a total of 79 dogs. Measurements of patients suffering from SRMA in the acute state (SRMA A) were compared with levels of patients under treatment with steroids (SRMA T), recurrence of the disease (SRMA R), other neurological disorders, and healthy dogs, using the two-part test. Additionally, secretion of IL-17 and interferon gamma (IFN-gamma) from the peripheral blood mononuclear cells (PBMCs) was confirmed by an enzyme-linked immunospot (ELISpot) assay. Results: Significant higher levels of IL-17 were found in CSF of dogs with SRMA A compared with SRMA T, other neurological disorders and healthy dogs (p < 0.0001). In addition, levels of CD40L in CSF in dogs with SRMA A and SRMA R were significantly higher than in those with SRMA T (p = 0.0004) and healthy controls (p = 0.014). Furthermore, CSF concentrations of IL-17 and CD40L showed a strong positive correlation among each other (rSpear = 0.6601;p < 0.0001) and with the degree of pleocytosis (rSpear = 0.8842;p < 0.0001 and rSpear = 0.6649;p < 0.0001, respectively). IL-17 synthesis from PBMCs in SRMA patients was confirmed;however, IL-17 is mainly intrathecally produced. Conclusions: These results imply that Th17 cells are inducing the autoimmune response in SRMA and are involved in the severe neutrophilic pleocytosis and disruption of the blood-brain barrier (BBB). CD-40L intrathecal synthesis might be involved in the striking vasculitis. The investigation of the role of IL-17 in SRMA might elucidate important pathomechanism and open new therapeutic strategies

    Validation and clinical significance of the childhood myositis assessment scale for assessment of muscle function in the juvenile idiopathic inflammatory myopathies

    No full text
    Objective. To examine the measurement characteristics of the Childhood Myositis Assessment Scale (CMAS) in children with juvenile idiopathic inflammatory myopathy (juvenile IIM), and to obtain preliminary data on the clinical significance of CMAS scores. Methods. One hundred eight children with juvenile IIM were evaluated on 2 occasions, 7-9 months apart, using various measures of physical function, strength, and disease activity. Interrater reliability, construct validity, and responsiveness of the CMAS were examined. The minimum clinically important difference (MID) and CMAS scores corresponding to various degrees of physical disability were estimated. Results. The intraclass correlation coefficient for 26 patients assessed by 2 examiners was 0.89, indicating very good interrater reliability. The CMAS score correlated highly with the Childhood Health Assessment Questionnaire (C-HAQ) score and with findings on manual muscle testing (MMT) (r(s) = -0.73 and 0.73, respectively) and moderately with physician-assessed global disease activity and skin activity, parent-assessed global disease severity, and muscle magnetic resonance imaging (rs = -0.44 to -0.61), thereby demonstrating good construct validity. The standardized response mean was 0.81 (95% confidence interval 0.53, 1.09) in patients with at least 0.8 cm improvement on a 10-cm visual analog scale for physician-assessed global disease activity, indicating strong responsiveness. In bivariate regression models predicting physician-assessed global disease activity, MMT remained significant in models containing the CMAS (P = 0.03) while the C-HAQ did not (P = 0.4). Estimates of the MID ranged from 1.5 to 3.0 points on a 0-52-point scale. CMAS scores corresponding to no, mild, mild-to-moderate, and moderate physical disability, respectively, were 48, 45, 39, and 30. Conclusion. The CMAS exhibits good reliability, construct validity, and responsiveness, and is therefore a valid instrument for the assessment of physical function, muscle strength, and endurance in children with juvenile IIM. Preliminary data on MID and corresponding levels of disability should aid in the clinical interpretation of CMAS scores when assessing patients with juvenile IIM

    Weakness of the San Andreas Fault revealed by samples from the active fault zone

    No full text
    Understanding the strength and slip behaviour of tectonic faults is a central problem in earthquake physics and seismic-hazard assessment. Many major faults, including the San Andreas Fault, are weak compared with the surrounding rock, but the cause of this weakness is debated. Previous measurements of the frictional strength of San Andreas Fault rocks are too high to explain the observed weakness. However, these measurements relied on samples taken at a distance from the active fault or from weathered surface samples. Recent drilling into the San Andreas Fault has provided material from the actively slipping fault at seismogenic depths. Here we present systematic measurements of the frictional properties and composition of the San Andreas Fault at 2.7 km depth, including the wall rock and active fault. We find that the fault is weak relative to the surrounding rock and that the fault rock exhibits stable sliding friction behaviour. The fault zone contains the weak mineral smectite and exhibits no frictional healing-bonds in the material do not heal after rupture. Taken together, the low inherent strength and lack of healing of the fault-zone material could explain why the San Andreas Fault slips by aseismic creep and small earthquakes in central California, rather than by large, destructive earthquakes. © 2011 Macmillan Publishers Limited. All rights reserved

    Slip on 'weak' faults by the rotation of regional stress in the fracture damage zone

    No full text
    Slip on unfavourably oriented faults with respect to a remotely applied stress is well documented and implies that faults such as the San Andreas fault and low-angle normal faults are weak when compared to laboratory-measured frictional strength. If high pore pressure within fault zones is the cause of such weakness, then stress reorientation within or close to a fault is necessary to allow sufficient fault weakening without the occurrence of hydrofracture. From field observations of a major tectonic fault, and using laboratory experiments and numerical modelling, here we show that stress rotation occurs within the fractured damage zone surrounding faults. In particular, we find that stress rotation is considerable for unfavourably oriented 'weak' faults. In the 'weak' fault case, the damage-induced change in elastic properties provides the necessary stress rotation to allow high pore pressure faulting without inducing hydrofracture

    Shear veins observed within anisotropic fabric at high angles to the maximum compressive stress

    No full text
    Some faults seem to slip at unusually high angles (>45°) relative to the orientation of the greatest principal compressive stress. This implies that these faults are extremely weak compared with the surrounding rock. Laboratory friction experiments and theoretical models suggest that the weakness may result from slip on a pre-existing frictionally weak surface, weakening from chemical reactions, elevated fluid pressure or dissolution–precipitation creep. Here we describe shear veins within the Chrystalls Beach accretionary mélange, New Zealand. The mélange is a highly sheared assemblage of relatively competent rock within a cleaved, anisotropic mudstone matrix. The orientation of the shear veins—compared with the direction of hydrothermal extension veins that formed contemporaneously—indicates that they were active at an angle of 80°±5° to the greatest principal compressive stress. We show that the shear veins developed incrementally along the cleavage planes of the matrix. Thus, we suggest that episodic slip was facilitated by the anisotropic internal fabric, in a fluid-overpressured, heterogeneous shear zone. A similar mechanism may accommodate shear at high angles to the greatest principal compressive stress in a range of tectonic settings. We therefore conclude that incremental slip along a pre-existing planar fabric, coupled to high fluid pressure and dissolution–precipitation creep, may explain active slip on severely misoriented faults
    corecore